Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 11(1): 24198, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585789

ABSTRACT

Certain immunizations including vaccination against tick-borne encephalitis virus (TBEV) have been suggested to confer cross-protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Within a prospective healthcare worker (HCW) cohort, we assessed the potentially protective role of anti-TBEV antibodies against SARS-CoV-2 infection. Among 3352 HCW, those with ≥ 1 previous TBEV vaccination (n = 2018, 60%) showed a reduced risk of SARS-CoV-2 seroconversion (adjusted odds ratio: 0.8, 95% CI: 0.7-1.0, P = 0.02). However, laboratory testing of a subgroup of 26 baseline and follow-up samples did not demonstrate any neutralizing effect of anti-TBEV antibodies against SARS-CoV-2 in live-virus neutralization assay. However, we observed significantly higher anti-TBEV antibody titers in follow-up samples of participants with previous TBEV vaccination compared to baseline, both TBEV neutralizing (p = 0.001) and total IgG (P < 0.0001), irrespective of SARS-CoV-2 serostatus. Based on these data, we conclude that the observed association of previous TBEV vaccination and reduced risk of SARS-CoV-2 infection is likely due to residual confounding factors. The increase in TBEV follow-up antibody titers can be explained by natural TBEV exposure or potential non-specific immune activation upon exposure to various pathogens, including SARS-CoV-2. We believe that these findings, although negative, contribute to the current knowledge on potential cross-immunity against SARS-CoV-2 from previous immunizations.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross Protection/immunology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/physiology , Seroconversion , Vaccination
2.
Virol J ; 17(1): 136, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-1435256

ABSTRACT

BACKGROUND: Coronaviruses (CoVs) were long thought to only cause mild respiratory and gastrointestinal symptoms in humans but outbreaks of Middle East Respiratory Syndrome (MERS)-CoV, Severe Acute Respiratory Syndrome (SARS)-CoV-1, and the recently identified SARS-CoV-2 have cemented their zoonotic potential and their capacity to cause serious morbidity and mortality, with case fatality rates ranging from 4 to 35%. Currently, no specific prophylaxis or treatment is available for CoV infections. Therefore we investigated the virucidal and antiviral potential of Echinacea purpurea (Echinaforce®) against human coronavirus (HCoV) 229E, highly pathogenic MERS- and SARS-CoVs, as well as the newly identified SARS-CoV-2, in vitro. METHODS: To evaluate the antiviral potential of the extract, we pre-treated virus particles and cells and evaluated remaining infectivity by limited dilution. Furthermore, we exposed cells to the extract after infection to further evaluate its potential as a prophylaxis and treatment against coronaviruses. We also determined the protective effect of Echinaforce® in re-constituted nasal epithelium. RESULTS: In the current study, we found that HCoV-229E was irreversibly inactivated when exposed to Echinaforce® at 3.2 µg/ml IC50. Pre-treatment of cell lines, however, did not inhibit infection with HCoV-229E and post-infection treatment had only a marginal effect on virus propagation at 50 µg/ml. However, we did observe a protective effect in an organotypic respiratory cell culture system by exposing pre-treated respiratory epithelium to droplets of HCoV-229E, imitating a natural infection. The observed virucidal activity of Echinaforce® was not restricted to common cold coronaviruses, as both SARS-CoV-1 and MERS-CoVs were inactivated at comparable concentrations. Finally, the causative agent of COVID-19, SARS-CoV-2 was also inactivated upon treatment with 50µg/ml Echinaforce®. CONCLUSIONS: These results show that Echinaforce® is virucidal against HCoV-229E, upon direct contact and in an organotypic cell culture model. Furthermore, MERS-CoV and both SARS-CoV-1 and SARS-CoV-2 were inactivated at similar concentrations of the extract. Therefore we hypothesize that Echinacea purpurea preparations, such as Echinaforce®, could be effective as prophylactic treatment for all CoVs due to their structural similarities.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Coronavirus/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Common Cold/drug therapy , Common Cold/virology , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , RNA Viruses/drug effects , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/virology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL